NOAA Technical Memorandum NWS WR- 143

THE DEPTH OF THE MARINE LAYER AT SAN DIEGO AS RELATED TO SUBSEQUENT COOL SEASON PRECIPITATION EPISODES IN ARIZONA

Ira S. Brenner National Weather Service Forecast Office Phoenix*, Arizona

May 1979

*Present affiliation: National Hurricane Center Miami, Florida

UNITED STATES DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, Richard Frank, Administrator

NATIONAL WEATHER SERVICE Richard E. Hallgren, Director

This Technical Memorandum has been reviewed and is approved for publication by Scientific Services Division, Western Region.

Mudp

L. W. Snellman, Chief Scientific Services Division Western Region Headquarters Salt Lake City, Utah

CONTENTS

																						,	Page
Figures .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	iv
Abstract	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
I.	Int	rc	odu	ict	io	n	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
II.	Dev	7e1	Lop	m€	nt	al	LI	Dat	a	Ba	ase	2 5	Str	at	:if	lic	at	cic	on	•	•	•	2
III.	Dev	ve]	Lop	ome	ent	:a1	LI	Dai	a	Sa	amĮ) 1e	e Æ	\na	1 3	/sj	s	•	•	•	•	•	3
IV.	Ind	deŗ	per	nde	ent	:]	[e	st	Da	ata	3	•	•	•	.•	•	•	•	•	•	•	•	5
V	. Coi	nc.	Lus	sid	ons	5	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	7
VI.	Ac	kno	วพว	Leo	lgr	nei	nt	s	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
VII.	Re	fe	rei	ac	es	•	. •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
Appendix	A	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8
Appendix	В		•		•	•	•	•				•	•	•	•	•	•	•	•	•	•	•	9

FIGURES

Page

Figure	1.	Time Interval of Periods Utilized in This Study	10
Figure	2a-e.	Probability of Precipitation Events at PHX and FLG by Periods for Types 1-5 from 0000 GMT and 1200 GMT RAOBS	11
Figure	За-Ъ.	Percent of Total Precipitation Events by Periods which Occurred in Types 1-4 from 0000 GMT and 1200 GMT RAOBS	12
Figure	4a-b.	Graphical Representation of the Proba- bility of Precipitation Events by Periods at PHX and FLG for Types 1-5. RAOBS at 0000 GMT And 1200 GMT	13
Figure	5a-d.	Breakdown Probabilities of Measurable Precipitation Events for the Presence or Lack of Moisture above 700 mb by Periods at PHX and FLG for Types 1-4. RAOBS at 0000 GMT and 1200 GMT	14
Figure	6a-d.	Comparisons of Test Data Brier Scores Derived from Original (POPA), and Breakdown (POPB) Probabilities of Measurable Precipitation to those from Final MOS Probabilities of the Computer Run Concurrent with RAOB Time .	15
Figure	7a-d.	Comparisons of Test Data Brier Scores Derived from Original (POPA), and Breakdown (POPB) Probabilities of Measurable Precipitation to those from Final MOS Probabilities of the Computer Run 12 Hours Previous to RAOB Time	16
			<u> </u>

THE DEPTH OF THE MARINE LAYER AT SAN DIEGO AS RELATED TO SUBSEQUENT COOL SEASON PRECIPITATION EPISODES IN ARIZONA

Ira S. Brenner Weather Service Forecast Office Phoenix*, Arizona

ABSTRACT. The relationship between the depth of the marine layer at San Diego, California, and potential precipitation episodes in Arizona during the cool season is studied. It is shown that a marine layer from the surface to at least the 700-mb level is generally necessary for consideration of a subsequent widespread precipitation episode in Arizona. The relationship of the height of this marine inversion to the current vertical motion field is also discussed.

I. INTRODUCTION

It has long been subjectively recognized by Arizona forecasters that a correlation exists during the cool season (October-April) between the depth of the marine layer at San Diego (MYF) and potential precipitation episodes in Arizona. This is logical since MYF would be directly upstream from Arizona in the southwesterly flow preceding an advancing upper level trough.

It is felt that the height of the top of the marine layer is proportionate to the intensity of the vertical-motion field being superimposed on the area as an upper trough approaches. All too frequently, a vertical-motion field sufficiently strong to produce precipitation west of the coastal mountains is insufficient for widespread precipitation in Arizona. The theory being tested is that the vertical motion field west of the coastal range must be strong enough to raise the top of the marine layer to at least the 700-mb level in order to consider a widespread precipitation episode in Arizona. Numerous articles have been written on the subject of the quantitative effects of Positive Vorticity Advection (PVA) and subsequent vertical-motion fields. Two of the more pertinent articles for Arizona include Brenner (1979) and Rosendal (1976). However, it must be realized that the magnitude of the PVA/vertical-motion field necessary to deepen the MYF marine inversion through at least the 700-mb level during a given time interval will vary since, among other things, it will be a function of the available initial moisture values. The objective of this study was to demonstrate that the depth of the marine layer at MYF can be used on a real-time basis as a means for indirectly, but nevertheless reliably, measuring the relative magnitude of the current vertical-motion field ahead of an approaching upper trough.

During 1977 and 1978, an investigation was conducted to try and determine a more precise relationship between the observed vertical moisture profile at MYF and subsequent precipitation (as well as nonprecipitation) episodes in Arizona. Plotted data from balloon releases (RAOBS) dating from March

*Present affiliation: National Hurricane Center, Miami, Florida

1971 through December 1975, were graciously loaned by the San Diego Weather Service Office for use as the developmental data base. The period of study involved data for the months of October through April only. Therefore, a total of thirty-three months of RAOBS comprised the developmental sample. With RAOBS for both 0000 and 1200 GMT available for nearly every day, approximately two thousand cases completed the developmental data base.

II. DEVELOPMENTAL DATA BASE STRATIFICATION

Moisture distributions were sampled in terms of the summation of the temperature-dew point spread inventoried every 50 mb through a predetermined column:

(1)
$$A = (T-Td)_x + (T-Td)_{x-50} + \dots + (T-Td)_y$$

where (T-Td) is the temperature-dew point spread at a given level, x = 1000 mb, y = 850 mb.

(2) $B = (T-Td)_x + (T-Td)_{x-50} + \dots + (T-Td)_z$

where (T-Td) is the temperature-dew point spread at a given level, x = 1000 mb, z = 700 mb.

The initial column stratifications (referred to as <u>Types</u> in the text) were selected as follows:

Type 1	equal A	$A \ge 10^{\circ}C$ and $B \ge 25^{\circ}C$.
Type 2	equal .	A [≤] 10°C and B>25°C.
Туре З	equ al	11°C ^{\leq} A ^{\leq} 30°C and 11°C ^{\leq} B ^{\leq} 60°.
Type 4	equal 1	$1^{\circ}C^{\leq}A^{\leq}30^{\circ}C$ and $B^{>}60^{\circ}C$.
Type 5	All rema	aining cases.

Types 1 and 2 sampled all the available cases where a nearly saturated column of air existed in at least the lower 5000 feet. This was most frequently associated with a deep marine layer. Type 1 was designed to examine cases where the vertical-motion field was sufficiently strong to bring this layer through at least the 700-mb level, while Type 2 assumed the marine layer top short of 700 mb, but above 850 mb.

The theory being tested by Types 1 and 2, as mentioned earlier, was that the vertical-motion field west of the coastal range must be strong enough to deepen the marine layer through at least the 700-mb level in order to consider a widespread precipitation episode in Arizona. This same basic theory was tested by Types 3 and 4 also, but the required amounts of available moisture at MYF were scaled down. All remaining cases were included in Type 5.

-2-

III. DEVELOPMENTAL DATA SAMPLE ANALYSIS

All the available MYF RAOBS from March 1971 through December 1975 (October through April only) were examined and separated into the various Types described earlier. Data from 0000 GMT RAOBS were analyzed apart from that of 1200 GMT. Data sheets for each Type were prepared and the dates of the respective RAOBS corresponding to each Type were recorded. Then four consecutive 12-hour periods (Figure 1) were individually examined for each date to determine if precipitation occurred at Phoenix (PHX, elevation 1100 ft) or Flagstaff (FLG, elevation 7000 ft). Throughout the remainder of this article, these four periods will simply be referred to as "Period 1, Period 2, etc.". However, when reference is made to the periods used by the National Weather Service for forecasts and comparison with Model Output Statistic (MOS) probabilities, the terms "FP Period 1, FP Period 2, etc." will be used. After tabulation, the number of measurable cases of precipitation only, and then the number of measurable and trace cases were totaled for each Type. Percent occurrences (in effect, conditional climatological probabilities for Periods 1-4 of this sample) were then computed for each. The results are shown in Figures 2a-e. Enough curiousity was raised to try and determine the percent of total measurable, as well as total measurable and trace cases that were caught by the combined Types 1-4. It was hoped that the percentage would be high enough to consider any adverse effects from rapidly changing conditions at balloon release times to be only an occasional compromising factor to the overall study. Figure 3 shows the results for Periods 1-4.

An analysis of Figure 3a reveals that in general, Types 1-4 for the 1200 GMT RAOBS caught on the order of 80-90% of the total measurable cases in the study for Period 1, 70-80% of the cases for Period 2, 60-70% for Period 3, and 50-60% for Period 4. The 0000 GMT RAOBS did not perform as well, indicating basically 70-80% for Period 1, 60-70% for Period 2, 50-60% for Period 3, and 40-50% for Period 4. An overall decrease in reliability occurred, as observed in Figure 3b, when the measurable and trace cases were considered. This was expected, since trace cases can frequently occur with middle and/or high-level moisture only. Perhaps another reason would be due to troughs approaching from a more northerly trajectory. Nevertheless, considering the overall rarity of precipitation events in Arizona and the fact that only one parameter (moisture at a fixed location) was being tested, it was felt that Types 1-4 locked in on those measurable events that did occur quite well. This was particularly true in Periods 1 and 2. One should be reminded at this point that this is only a climatological study, and although it would appear that this study has considerable prognostic value, it should be primarily viewed from a diagnostic standpoint when used operationally.

As mentioned earlier, 1200 GMT RAOBS outperformed the 0000 GMT RAOB data in the analysis of Figure 3. This diurnal conflict is intriguing. The 0000 GMT RAOBS had nearly 100 less cases per period in the total sample size for the combined Types 1-4 than the 1200 GMT RAOBS. Considerably more precipitation events occurred in Type 5 using 0000 GMT RAOBS as opposed to 1200 GMT data. One could speculate here that the problem is likely related to afternoon heating and mixing resulting in larger temperature-dew point spreads in the 1000- to 850-mb layer. Therefore, even though on a given day the vertical-motion field might still be strong enough

-3-

to give widespread precipitation in Arizona, the 0000 GMT RAOB may occasionally fail to satisfy the criteria for any of Types 1-4.

A graphical representation of the data presented in Figures 2a-e is shown in Figures 4a,b. Note that of the five Types for both PHX and FLG at 0000 GMT as well as 1200 GMT, the two Types involving high moisture values concentrated in at least the 1000-mb - 700-mb layer yielded the highest probabilities (Types 1 and 3). Types 2 and 4, which have high moisture only up to 850 mb, yielded lower probabilities (significantly lower for PHX) than those obtained by Types 1 and 3. This strongly suggests that high moisture values below 850 mbs, complimented by moisture in the 850-mb - 700-mb layer, is necessary for consideration of widespread precipitation in Arizona. This point is additionally supported by a comparison of Types 3 Type 4 involved the scaled-down moisture criteria in the 1000-mb and 4. 850-mb layer and "dry" conditions between 850 mb and 700 mb. This, in itself, resulted in relatively low probabilities. The addition of moisture to the 850-mb - 700-mb layer to this, as shown in Type 4, with no change below 850 mb, sharply increased the probabilities (see the graphs of Type 3 for FLG and PHX).

Interest was then aroused as to the potential additional effects of high moisture <u>above</u> the 700-mb level. Therefore, Types 1 and 2 were tested for the effects of varying moisture supply above 700 mb. The criteria used was as follows:

(3) $C = (T-Td)_z + (T-Td)_{z-50} + \dots + (T-Td)_{y}$

where (T-Td) is the temperature-dew point spread at a given level, z = 700 mb, v = 400 mb.

These were segregated such that:

Sub-Type 1a equal Type 1 and $C^{\leq}60^{\circ}C$. Sub-Type 1b equal Type 1 and $C^{\leq}60^{\circ}C$. Sub-Type 2a equal Type 2 and $C^{\leq}60^{\circ}C$. Sub-Type 2b equal Type 2 and $C^{\leq}60^{\circ}C$. Sub-Type 3a equal Type 3 and $C^{\leq}60^{\circ}C$. Sub-Type 3b equal Type 3 and $C^{\leq}60^{\circ}C$. Sub-Type 4a equal Type 4 and $C^{\leq}60^{\circ}C$.

Climatological probabilities for these Sub-Types (hereafter called "breakdown pops") were then derived and are displayed in Figure 5a-d with the original combined (or non-substratified) probabilities from Figure 2 a-e for comparison. The Sub-Typing resulted in data samples generally too small to be considered representative. Despite this, in most instances, the presence of high moisture values above 700 mb increased the probabilities from that of the original combined values, while the absence of this moisture had the opposite effect.

IV. INDEPENDENT TEST DATA

The months of October 1977 through April 1978 were utilized as test data. This provided a total sample size of 414 cases. Brier scores were totaled using the original combined pops for measurable precipitation (POPA) from Figures 2a-e as well as the breakdown pops (POPB). Comparisons were then made to the corresponding Final Model Output Statistics (MOS) Brier score in each of the three National Weather Service's FP periods. The results are listed in Figure 6a-d. Brier scores are rounded off and the decimal points displaced for convenience. As can be seen, the usage of the break-down pops (POPB) generally degraded the results (increased the Brier scores) from those obtained by POPA. This was quite likely due to the problem of small sample size alluded to earlier. The breakdown pops did have a positive influence in a few cases. In general, the number of cases used to derive the breakdown probability for the presence of upper level moisture was too small to seriously consider the results reliable.

The comparison of POPA to MOS Brier scores displayed a few significant areas where the MOS forecasts could possibly be improved upon on an operational basis. Those listed below include periods where POPA Brier scores were less than or equal to the MOS Brier score in any period, or where POPA was less than 30 units above the MOS score in Periods 1 or 2 (indicating MOS was only slightly better than conditional climatology in the short term).

_	RAOB TIME	STATION	TYPE	FP PERIOD	SAMPLE SIZE PER PERIOD
1.	0000gmt	PHX	2	1,2,3	11
2.	0000GMT	FLG	2	2,3	11
3.	0000GMT	PHX	1	2,3	12
4.	0000GMT	FLG	1	1,2,3	12
5.	1200GMT	PHX	1	1,2	20
6.	1200GMT	FLG	1	1,2	20
7.	0000GMT	PHX	4	1	26
8.	1200GMT	PHX	4	1,2,3	27
9.	1200GMT	PHX	3	1,2	11
10.	1200GMT	FLG	3	1	11

MOS WEAKNESS LIST #1

Of special interest here is that for Type 1, the wettest and most important of the Types in terms of precipitation events, MOS commonly was only slightly better or actually worse than the conditional climatological pops from the study (POPA). This was true at both RAOB times and for both PHX and FLG. A review of the appropriate data indicated that MOS had a definite tendency for forecasting rather low probabilities (0-30%)--many on which precipitation occurred.

-5--

A more detailed examination of the possible weaknesses in the MOS forecasts for the above MOS WEAKNESS LIST #1 is found in Appendix A and labeled WEAKNESS LIST #1. The numbers of the 1-10 in WEAKNESS LIST #1 correspond to the same numbers in the above MOS WEAKNESS LIST #1.

A return to Figure 3 brings forth another interesting point. The best results for measurable as well as measurable plus trace cases were in Periods 1 and 2. Perhaps the operational forecaster could also be served by this study in terms of an updating tool. The analysis of Brier scores just examined from Figure 6 involved a comparison of data from a given RAOB to the MOS run from the <u>same</u> time as the RAOB. However, the RAOB is nearly 10 hours old by the time the first FP period begins. In actuality, a given RAOB is received almost at the beginning time of the first FP period MOS probabilities from the <u>previous</u> run. For example, the 1200GMT RAOB is received and plotted by the time the first FP period MOS pop from the <u>previous</u> 0000GMT run is only about 2 hours old. The utility of this study, examined from the standpoint of an updating aid, is tabulated in Figure 7a-d.

The comparison of POPA to MOS Brier scores for purposes of updating also indicated areas where MOS forecasts from the previous runs were potentially weak. Opportunities for improvement upon MOS forecasts existed in the following categories:

					SAMPLE SIZE
	RAOB TIME	STATION	TYPE	FP PERIOD	PER PERIOD
1.	0000GMT	PHX	2	1.2.3	11
2.	0000GMT	FLG	2	1,2,3	11
3.	0000GMT	PHX	1	1,2,3	12
4.	0000GMT	FLG	1	1,2,3	12
5.	1200GMT	PHX	1	1,2	20
6.	1200GMT	FLG	1	1,2,3	20
7.	0000GMT	PHX	4	2,3	26
8.	0000GMT	FLG	4	1, 3	26
9.	1200GMT	PHX	4	1,2,3	27
L0.	1200GMT	FLG	4	1	27
L1.	1200GMT	PHX	3	2,3	11
L2.	1200GMT	FLG	3	3	11

MOS WEAKNESS LIST #2

Note here also that Type 1 showed up again at both RAOB times and for both PHX and FLG. As with <u>MOS WEAKNESS LIST #1</u>, an investigation of the data revealed that the MOS tendency to forecast rather low probabilities, on which precipitation occurred, persisted. Appendix B uses a format similar to Appendix A for further describing the possible MOS weaknesses corresponding to <u>MOS WEAKNESS LIST #2</u>.

-6-

V. CONCLUSIONS

This conditional climatological study was considered to be a beneficial diagnostic forecast aid for PHX WSFO. Even if used strictly from an objective standpoint, the study yielded excellent results. The added usage of a limited amount of subjective reasoning and modification will improve the operational results even further. The utility of the study extended beyond the capacity of making three-period probability forecasts. It was found that the study also served the forecaster successfully as an updating tool.

The developmental data sample did not stratify precipitation episodes at PHX or FLG by storm origin or trajectory. Despite this, results, particularly using 1200GMT MYF RAOBS, still displayed a definite relationship between the depth of the marine layer at MYF and subsequent widespread precipitation episodes in Arizona. It is felt that on an operational basis, subjective evaluation can be made to the study probabilities for cases where storms approach from a more northerly direction or when an unusually strong influx of tropical moisture is involved.

This investigation gave strong supportive evidence that high moisture content (i.e., a high marine inversion) at MYF from the surface to at least 700 mb is generally necessary for widespread precipitation episodes in Arizona. It is the opinion of the author that when the top of the marine layer at MYF is lifted to at least the 700-mb level ahead of an upper-level trough, the vertical-motion field will generally remain strong enough to produce widespread precipitation upon reaching Arizona.

Although not conclusive from this study, it would appear subjectively that additional high moisture values in the 700-mb - 400-mb layer enhance the probabilities of precipitation even further.

A fringe benefit of this study was the identification of potentially weak areas in the MOS probability forecasts. With reasonable discretion, forecasters can successfully use the results listed in the <u>INDEPENDENT TEST</u> <u>DATA</u> section to identify and hopefully improve upon available corresponding MOS forecasts.

VI. ACKNOWLEDGMENTS

Appreciation is extended to the San Diego Weather Service Office for use of their plotted RAOBS and to Mrs. Tommie McCabe and Mrs. Evelyn Allan for their conscientious typing efforts.

VII. REFERENCES

Brenner, I. S., 1979: A Case Study of Rapid Air Mass Modification Over Arizona Due to Large-Scale Upward Motion. <u>National Weather Digest</u>, Vol. 4, No. 1, February, pp 18-26.

Rosendal, Hans E., 1976: The Zero Relative Vorticity Line at 500 mb as Related to Precipitation and Surface Fronts. Manuscript from AMS Sixth Conference on Weather Forecasting and Analysis, Albany, New York.

APPENDIX A

WEAKNESS LIST #1

An analysis of the data from <u>MOS WEAKNESS LIST #1</u> revealed the following information (Numbers 1-10 refer to the corresponding numbers in <u>MOS</u> WEAKNESS LIST #1):

- 1. MOS frequently forecast pops of 30% or greater with no cases of measurable precipitation occurring.
- 2. Measurable precipitation fell on more than half the cases when MOS forecast pops between and including 5% and 20%. Also, no measurable precipitation fell on MOS pops of 70% or greater.
- 3. No measurable precipitation fell on MOS pops of 70% or greater. Also measurable precipitation fell on half the cases where MOS pops were 20% or less.
- 4. A large amount of measurable precipitation events occurred on MOS pops of 30% or less.
- 5. Measurable precipitation fell on one half of the cases where MOS forecast pops of 5% 20%.
- Measurable precipitation fell on most of the cases where MOS forecast pops of 5% - 30%.
- 7. No measurable precipitation fell on MOS pops of 30% or greater.
- 8. No measurable precipitation fell on MOS pops of 20% 60%.
- Measurable precipitation fell on a 0% in FP Period 1. No measurable precipitation fell on MOS pops of 50% or greater in FP Period 2.
- 10. Several incidents where measurable precipitation fell were on MOS pops of 20% or less.

-8-

APPENDIX B

An analysis of this data from <u>MOS WEAKNESS LIST #2 revealed</u> the following:

- MOS frequently forecast pops of 30% or greater, and, excepting one case of .08 in. on a 60% pop, no other measurable precipitation occurred. For FP Period 1, MOS got precipitation on half of the 0% and 5%s.
- 2. Measurable precipitation fell on more than half the cases when MOS forecast pops from 5% and 20%. Also, no measurable precipitation fell on MOS pops 70% or greater in FP Period 3.
- 3. No measurable precipitation fell 2 out of 3 times on MOS pops of 70% or greater. Measurable precipitation fell on half of the pops of 20% or less.
- 4. A large amount of measurable precipitaiton events occurred on MOS pops of 30% or less.
- 5. Measurable precipitation fell on half the cases where MOS forecast pops of 5% to 20%.
- 6. Measurable precipitation fell on most cases where MOS forecast pops of 5% to 30%.
- 7. No measurable precipitation fell on MOS pops of 40% or greater.
- No measurable precipitation fell on MOS pops 50% or greater. Measurable precipitation fell on half the cases of MOS pops of 2%.
- No measurable precipitation fell, excepting one case of
 .01 inch on a 20% MOS pop, on MOS pops in the 20-60% bracket.
- 10. No measurable precipitation fell, excepting one case, on MOS pops 50% or greater.
- Measurable precipitation fell on a 0% in FP Period 2. No measurable precipitation fell on MOS pops of 50% or greater in FP Period 3.
- 12. No measurable precipitation fell on MOS pops of 50% or greater.

	0000 GMT RAOB	
PERIOD NUMBER USED IN STUDY	TIME INTERVAL (GMT)	CORRESPONDING FP PERIOD
1	0000 - 1200	
2	1200 - 0000	. 1
3	0000 - 1200	2 .
4	1200 - 0000	3
		4944
	1200 GMT RAOB	
PERIOD NUMBER USED IN STUDY	TIME INTERVAL (GMT)	CORRESPONDING FP PERIOD
1	1200 - 0000	
2	0000 - 1200	1
3	1200 0000	2
-	1200 - 0000	۷.
4	0000 - 1200	3

Figure 1. Time Interval of Periods Utilized in this Study.

0000	GMT	RACE
0000	GEAL	10100

Γ		STN			PHX		SAMPLE	Γ		пc	
l	TIPE 1	PD	1	2	3	4	TYPE 1	1	2	3	4
	MEASURABLE CASES		11	9	9	4	25	18	19	17	12
	MEASURABLE AND TRACE CASES		15	12	10	5	25	23	21	20	13
	PERCENT MEASURABLE		44	36	36	16		72	76	68	48
ſ	PERCENT MEASURABLE AND TRACE		60	48	40	20		92	84	80	52

0000 GHT RAOB

PHX

5

4

5

8

14

2 3

24 14

9

STN

PD

1

4

14 16 11

11

38

TYPE 2

MEASURABLE

CASES MEASURABLE AND TRACE

CASES

MEASURABLE PERCENT MEASURABLE

AND TRACE

SAMPLE SIZE FOR TYPE 2

37

37

FLG

12

15

2 3

1

22 22 20

27 25 23

59 59 54 32

73 68 62 41

nn	CMT	RAOB	

									-		the second se
		STN		P	нх		SAMPLE		F	TG	
	TYPE 3	PD	1	2	3	4	TIPE 3	1	2	3	4
i	MEASURABLE CASES		20	11	8	8	50	35	30	20	22
_	MEASURABLE AND TRACE CASES		27	17	14	12	50	40	36	27	27
_	PERCENT MEASURABLE		40	22	16	16		70	60	40	44
	PERCENT MEASURABLE AND TRACE		54	34	28	24		80	72	54	54

1200 GMT RAOB

	STN			енх		SAMPLE	FIG					
TYPE 3	PD	1	2	3	4	TYPE 3	1	2	3	4		
MEASURABLE CASES		13	8	9	7	42	33	26	14	11		
MEASURABLE AND TRACE CASES		26	19	13	11	42	34	35	21	15		
PERCENT MEASURABLE		31	19	21	17		79	62	33	26		
PERCENT MEASURABLE AND TRACE		62	45	31	26		81	83	50	36		

1200 GMT RAOB

	STN			рнх		SAMPLE	FIG					
TYPE 1	PD	1	2	3	4	TYPE 1	1	2	3	4		
MEASURABLE CASES		1.9	16	6	6	41	35	27	19	15		
MEASURABLE AND TRACE CASES		25	22	11	8	41	40	33	23	23		
PERCENT MEASURABLE		46	39	15	15		85	66	46	37		
PERCENT MEASURABLE AND TRACE		61	54	27	20		98	81	56	56		

43 30 22

					1200	GMT RAUB							
	STN		_ 1	энх		SAMPLE	FIG						
TYPE 2	PD	1	2	3	4	TYPE 2	1	2	3	4			
MEASURABLE CASES		13	17	17	15	112	55	46	47	40			
MEASURABLE AND TRACE CASES		25	28	30	22	112	74	64	57	50			
PERCENT MEASURABLE		12	15	15	13		49	41	42	36			
PERCENT MEASURABLE AND TRACE		22	25	27	20		66	57	51	45			

0000 GMT RAOB

SAMPLE SIZE FOR FIG STN PHX TYPE 4 PD 2 3 4 1 2 3 TYPE 4 MEASURABLE 16 12 14 37 9 109 35 33 31 CASES MEASURABLE AND TRACE 23 23 28 18 109 51 52 44 37 CASES PERCENT 11 13 15 8 32 34 30 28 MEASURABLE PERCENT MEASURABLE 21 21 26 17 47 48 40 34 AND TRACE

1200	GMT	RAOB	

	STN			РНХ.		SAMPLE	FIG				
TYPE 4	PD	1	2	3	4	TYPE 4	1	2	3	4	
MEASURABLE CASES		7	4	7	6	123	23	23	29	30	
MEASURABLE AND TRACE CASES		11	17	16	17	123	34	36	37	41	
PERCENT MEASURABLE		6	3	6	5		19	19	24	24	
PERCENT MEASURABLE AND TRACE		9	14	13	14		28	29	30	33	

					0000	GMT RAOB							
	STN		F	PHX		SAMPLE NOD	FLG						
TIPE 5	PD	1	2	3	4	TYPE 5	1	2	3	4			
MEASURABLE CASES		14	20	27	38	781	50	63	73	90			
MEASURABLE AND TRACE CASES		41	42	52	66	781	93	98	125	133			
PERCENT MEASURABLE		2	3	4	5		6	8	9	12			
PERCENT MEASURABLE		5	5	7	8		12	13	16	17			

					1200	GMT RAOB				
	STN			рнх		SAMPLE STAFF FOR		1	716	
TYPE 5	PD	1	2	3	4	TYPE 5	1	2	3	4
MEASURABLE CASES		7	15	24	25	684	28	38	63	63
MEASURABLE AND TRACE CASES		23	29	44	51	684	50	73	92	104
PERCENT MEASURABLE		1	2	4	4		4	6	9	9
PERCENT MEASURABLE AND TRACE		3	4	6	8		7	11	13	15

Figures 2a-e: Probability of Precipitation Events at PHX and FLG by Periods for Types 1-5 from 0000 GMT and 1200 GMT RAOBS.

• •

÷	4	
H	-	
1		

		MEAS	SURAH F	BLE I	PRECI RE 3A	PITATION					<u>. </u>	· · ·
	PERIOD	1	1200 2) GM1 3	r 4 SI	TOTAL SAMPLE ZE PER PD	PERIOD	1	0000) GM1 3	r 4 S1	TOTAL SAMPLE ZE PER PD
TOTAL NUMBER OF	PHX	52	45	39	34	210	PHX	51	41	36	26	221
TYPES 1-4	FLG	146	122	109	96	210	FLG	110	109	90	77	221
TOTAL NUMBER OF	PHX	59	60	63	59	1002	PHX	65	61	63	64	1002
	FLG	174	160	172	159		FLG	160	172	163	167	1002
PERCENT OF TOTAL	PHX	88%	75%	62%	58%		PHX	78%	67%	57%	41%	
OCCURRED IN TYPES 1-4	FLG	84 <u>%</u>	76%	63%	60%		FLG	69%	63%	55%	46%	

RELIABILITY

RELIABILITY MEASURABLE AND TRACE

			F	IGUR	<u>E 3B</u>							
	PERIOD	1	1200 2) GMT 3	4 SI2	TOTAL SAMPLE ZE PER PD	PERIOI	D 1	000)0 GN 2 3	4T 3 4 SI	TOTAL SAMPLE IZE PER PD
TOTAL NUMBER OF EVENTS CAUGHT BY TYPES 1-4	PHX FLG	87 182	86 168	70 138	58 129	318	PHX FLG	79 141	68 134	63 114	43 92	221
TOTAL NUMBER OF EVENTS IN STUDY	PHX FLG	110 232	115 241	114 230	109 235	1002	PHX FLG	120 234	110 232	115 239	109 225	1002
PERCENT OF TOTAL EVENTS WHICH OCCURRED IN TYPES 1-4	PHX FLG	79% 78%	75% 70%	61% 60%	53% 55%		PHX FLG	66% 60%	62% 58%	55% 48%	39% 41%	

FIGURES 3A and 3B: Probability of Precipitation Events at PHX and FLG by Periods for Types 1-5 from 0000 GMT and 1200 GMT RAOBS.

-12-

r.

Figure 4a-b: Graphical Representation of the Probability of Precipitation Events by Periods at PHX and FLG for Types 1-5. RAOBS at 0000 GMT and 1200 GMT.

PROBABILITY OF MEASURABLE PRECIPITATION

TYPE 1

PHX

			0000	GMT		1200 GMT							
	N	PD1	PD2	PD3	PD4		N	PD1	PD2	PD3	PD4		
WITH UPPER LEVEL MOISTURE	14	50	50	36	21	WITH UPPER LEVEL MOISTURE	13	62	54	23	15		
COMBINED	25	44	36	36	16	COMBINED	41	46	39	15	15		
WITHOUT UPPER LEVEL MOISTURE	11	36	18	36	9	WITHOUT UPPER LEVEL MOISTURE	28	39	32	11	14		

					FLC	3					
			0000	GMT					1200 GM	fT	
	N	PD1	PD2	PD3	PD4)	N	PD1	PD2	PD3	PD4
WITH UPPER LEVEL MOISTURE	14	79	79	64	50	WITH UPPER LEVEL MOISTURE	13	92	69	54	38
COMBINED	25	72	76	68	48	COMBINED	41	85	66	46	37
WITHOUT UPPER LEVEL MOISTURE	11	64	73	73	45	WITHOUT UPPER LEVEL MOISTURE	28	82	64	43	36

PROBABILITY OF MEASURABLE PRECIPITATION

TYPE 3

PHX

		0000	GMT			1200 GMT					
N	PD1	PD2	PD3	PD4		N	PD1	PD2	PD3	PD4	
10	40	20	20	10	WITH UPPER LEVEL MOISTURE	15	27	27	47	27	
50	40	22	16	16	COMBINED	42	31	19	21	17	
40	40	23	15	18	WITHOUT UPPER LEVEL MOISTURE	27	33	15	7	11	
	N 10 50 40	N PD1 10 40 50 40 40 40	0000 N PD1 PD2 10 40 20 50 40 22 40 40 23	N PD1 PD2 PD3 10 40 20 20 50 40 22 16 40 40 23 15	N PD1 PD2 PD3 PD4 10 40 20 20 10 50 40 22 16 16 40 40 23 15 18	N PD1 PD2 PD3 PD4 10 40 20 20 10 WITH UPPER LEVEL MOISTURE 50 40 22 16 16 COMBINED 40 40 23 15 18 WITHOUT UPPER LEVEL MOISTURE	N PD1 PD2 PD3 PD4 N 10 40 20 20 10 WITH UPPER LEVEL MOISTURE 15 50 40 22 16 16 COMBINED 42 40 40 23 15 18 WITHOUT UPPER LEVEL MOISTURE 27	N PD1 PD2 PD3 PD4 N PD1 10 40 20 20 10 WITH UPPER LEVEL MOISTURE 15 27 50 40 22 16 16 COMBINED 42 31 40 40 23 15 18 WITHOUT UPPER LEVEL MOISTURE 27 33	N PD1 PD2 PD3 PD4 N FD1 PD2 PD3 10 40 20 20 10 WITH UPPER LEVEL MOISTURE 15 27 27 50 40 22 16 16 COMBINED 42 31 19 40 40 23 15 18 WITHOUT UPPER LEVEL MOISTURE 27 33 15	N PD1 PD2 PD3 FD4 N PD1 PD2 PD3 10 40 20 20 10 WTH UPPER LEVEL MOISTURE 15 27 27 47 50 40 22 16 16 COMBINED 42 31 19 21 40 40 23 15 18 WTHOUT UPPER LEVEL MOISTURE 27 33 15 7	

1						FL	3					
				1200 GMT								
		N	PD1	PD2_	PD3	PD4		N	PD1	PD2	PD3	PD4
	WITH UPPER LEVEL MOISTURE	10	90	80	30	30	WITH UPPER LEVEL MOISTURE	15	87	73	47	40
	COMBINED	50	70	60	40	44	COMBINED	42	79	62	33	26
	WITHOUT UPPER LEVEL MOISTURE	40	65	55	43	48	WITHOUT UPPER LEVEL MOISTURE	27	74	56	26	19

PROBABILITY OF MEASURABLE PRECIPITATION

TYPE 2

PHX

			0000	GMT					1200 G	с	
	N	PD1	PD2	PD3	PD4		N	PD1	PD2	PD3	PD4
WITH UPPER LEVEL MOISTURE	7	43	71	14	43	WITH UPPER LEVEL MOISTURE	10	20	40	20	0
COMBINED	37	11	24	14	14	COMBINED	112	12	15	-1,5	13
WITHOUT UPPER LEVEL MOISTURE	30	3	20	13	7	WITHOUT UPPER LEVEL MOISTURE	102	12	13	15	15

FLG

			0000	GMT					1200 G	fT	1
	N	PD1	PD2	PD3	PD4		N	PD1	PD2	PD3	PD4
WITH UPPER LEVEL MOISTURE	7	86	86	71	57	WITH UPPER LEVEL MOISTURE	10	60	60	60	40
COMBINED	37	59 -	59	54	32	COMBINED	112	49	41	42	36
WITHOUT UPPER LEVEL MOISTURE	30	53	53	50	27	WITHOUT UPPER LEVEL MOISTURE	102	48	39	40	35

PROBABILITY OF MEASURABLE PRECIPITATION

TYPE 4 PHX

									1000 0	· ·	
			0000	GMT			1 1		1200 GP		
	N	PD1	PD2	PD3	PD4_		N	PDL	PD2	203	PD
WITH UPPER LEVEL MOISTURE	9	33	56	33	11	WITH UPPER LEVEL MOISTURE	3	33	33	33	0
COMBINED	109	15	11	13	8	COMBINED	123	6	3	6	5
WITHOUT UPPER LEVEL MOISTURE	100	13		11	8	WITHOUT UPPER LEVEL MOISTURE	120	5	3	5	5
			0000	GMT	FLO	;			1200 G	rr	
	N	PD1	PD2	PD3	PD4		٠N	PD1	PD2	PD3	PD/
WITH UPPER LEVEL MOISTURE	9	56	67	44	44	WITH UPPER LEVEL MOISTURE	.3	33	67	67	67
COMBINED	109	32	34	30	28	COMBINED	123	19	19	24	24
WITHOUT UPPER LEVEL MOISTURE	100	, 30	31	29	27	WITHOUT UPPER LEVEL MOISTURE	120	18	18	23	23

FIGURE 5A-D: BREAKDOWN PROBABILITIES OF MEASURABLE PRECIPITATION EVENTS FOR THE PRESENCE OR LACK OF MOISTURE ABOVE 700 MB BY PERIODS AT PHX AND FLG FOR TYPES 1-4. RAOBS AT 0000 GMT AND 1200 GMT.

-14-

:

COMPARISON OF TOTAL BRIER SCORES FOR BOTH ORIGINAL POPS (POPA) AND BREAKDOWN POPS (POPB) TO CURRENT MOS POPS CURRENT 0000 GMT RAOB

CURRENT 0000 GMT MOS

MOS

POPB 324

PD1(FP)

MOS

POPA

168

POPB 217

193

FLG

PD2(FP)

MOS

POPA

228

POPB 299

237

TYPE 1 - N=12

PD3(FP)

POPA

288

313

PHX

POPA

332

PD2(FP)

332 MOS

POPB 345

COMPARISON	OF TOTAL BE	RIER SCORES FO	OR BOTH ORL	GINAL POPS
(POPA) AN	D BREAKDOWN	POPS (POPB) 7	TO CURRENT	MOS POPS

CURRENT 0000 GMT RAOB CURRENT 0000 GMT MOS

TYPE 3 - N=25

		PHX						FLG			_
PD1 (F	PD1(FP) PD2(FP) PD3(FP)						P)	PD2 (F	?)	PD3(FI	?)
POPA	PA POPA PO			POPA		POPA		POPA		POPA	,
520	MOS	<u>520</u>	MOS	400	MOS	<u>600</u>	MOS	600	MOS	540	MOS
POPB	294	рорв	346	POPB	231	POPB	356	POPB	301	Рорв	<u>230</u>
580	•	520	l .	. <u>433</u>	'	672	,	<u>617</u>		<u>681</u>	1

PD3(FF)

300 MOS

POPB 388

POPA

300

CURRENT 0000 GMT MOS TYPE 2 - N=11

CURRENT 0000 GMT RAOB

		РНХ						FLG			
PD1 (F	P)	PD2(F	P)	PD3(F	P)	PD1(F	P)	PD2(F	P)	PD3(F	P)
POPA		POPA		POPA		POPA		POPA		POPA	
104	MOS	91	MOS	<u>91</u>	MOS	276	MOS	<u>275</u>	MOS	259	MOS
POPB	100	POPB	125	POPB	182	POPB	238	POPB	396	POPB	<u>.301</u>
<u>104</u>	1	<u>91</u>	1			276	1	275	1	259)

CURRENT 0000 GMT RAOB CURRENT 0000 GMT MOS

TYPE 4 - N=26

		РНХ						FLG			
PD1(F	?)	PD2(FI	?)	PD3(F	P)	PD1 (FI	?)	PD2(F	?)	PD3 (FI	?)
POPA		POPA	1	POPA		POPA		POPA		POPA	
106	MOS	266	MOS	266	MOS	354	MOS	<u>394</u>	MOS	474	MOS
POPB	<u>121</u>	POPB	176	POPB	<u>124</u>	POPB	185	POPB	227	рорв	223
58		242		266		354		388	1	468	(

-15-

6

PD1(FP) POPA

MOS POPB 209

372

495

COMPARISON OF TOTAL BRIER SCORES FOR BOTH ORIGINAL POPS (POPA) AND BREAKDOWN POPS (POPB) TO CURRENT MOS POPS

> CURRENT 1200 GMT RAOB CURRENT 1200 GMT MOS

TYPE 1 - N=20

		PHX						FLG			
PD1(FI	?)	PD2(FF	?)	PD3(FI	?)	PD1(FI	?)	PD2 (FF)	PD3(FI	')
POPA		POPA		POPA		POPA		POPA		POPA	
<u>520</u>	MOS	500	MOS	380	MOS	340	MOS	500	MOS	500	MOS
POPB	<u>567</u>	POPB	<u>483</u>	POPB	366	POPB	<u>434</u>	POPB	476	POPB	<u>352</u>
500		<u>510</u>	•	450	I	<u>350</u>	•	<u>530</u>	1	<u>500</u>	

COMPARISON OF TOTAL BRIER SCORES FOR BOTH ORIGINAL POPS (POPA) AND BREAKDOWN POPS (POPB) TO CURRENT MOS POPS

CURRENT 1200 GMT RAOR CURRENT 1200 GMT MOS

TYPE 3 - N=11

[РНХ						FLG			
PD1 (FI	D1(FP) PD2(FP) PD3(FP)					PD1(FP	')	PD2 (FF)	PD3(FF	·)
POPA		POPA		POPA		POPA		POPA		POPA	
164	MOS	164	MOS	224	MOS	<u>316</u>	MOS	<u>179</u>	MOS	299	MOS
POPB	147	POPB	172	POPB	<u>191</u>	POPB	<u>291</u>	POPB	118	рорв	241
<u>169</u>		207	ŀ	219	1	329	,	195	4	<u>316</u>	

CURRENT 1200 GMT RAOB CURRENT 1200 GMT MOS TYPE 2 N-17

				N-TI							
}		PHX						FLG			
PD1(FI	?)	PD2 (FI	?)	PD3(FI	?)	PD1 (FI	?)	PD2(FF	')	PD3(FI	?)
POPA		POPA		POPA		POPA		POPA		POPA	
368	MOS	428	MOS	257	MOS	412	MOS	392	MOS	<u>392</u>	MOS
рорв	251	POPB	<u>175</u>	POPB	236	POPB	<u>179</u>	рорв	<u>147</u>	POPB	226
<u>372</u>	I	428	1	284	1	<u>412</u>	I	372	I	372	
(ſ		(1	1		1		[

CURRENT 1200 GMT RAOB CURRENT 1200 GMT MOS

		_ 1	YPE 4	- №=27							
		рнх						FLG			
PD1(F	?)	PD2 (FI	?)	PD3(FI	?)	PD1 (FI	?)	PD2 (FI	?)	PD3 (FI	?)
POPA		POPA		POPA		POPA		POPA		POPA	
<u>97</u>	MOS	<u>97</u>	MOS	97	MOS	408	MOS	408	MOS	288	MOS
POPB	127	рорв	<u>137</u>	рорв	199	POPB	352	POPB	257	POPB	279
<u>97</u>	•	<u>97</u>	4	<u>97</u>	1	<u>408</u>	ſ	408	1	288	•

FIGURE 6a-d. COMPARISONS OF TEST DATA BRIER SCORES DERIVED FROM ORIGINAL (POPA) AND BREAKDOWN (POPB) PROBABILITIES OF MEASURABLE PRECIPITATION TO THOSE FROM FINAL MOS PROBABILITIES OF THE COMPUTER RUN CONCURRENT WITH RAOB TIME.

COMPARISON OF TOTAL BRIER SCORES FOR BOTH ORIGINAL POPS (POPA) AND BREAKDOWN POPS (POPB) TO PREVIOUS MOS POPS

CURRENT 0000 GMT RAOB CURRENT 0000 GMT MOS

TYPE 1 ... N=12

COMPARISON	OF TOTAL	BRIER	SCORES	FOR	BOTH OF	IGINAL	POPS
(POPA) ANI	BREAKDO	WN POPS	(POPB)	TO	PREVIOU	S MOS	POPS

CURRENT 0000 GMT RAOB PREVIOUS 1200 GMT MOS

PD1

POPA

POPB 376

913

785

MOS

FLG

POPA

600

POPB

672

PD2(FP PD1) PD3(FP PD2)

MOS

447

POPA

600 MOS

POPB 431

617

TYPE 3 - N=25

PD2(FP PD1) PD3(FP PD2)

POPA

520

РНХ

POPA

520 MOS

POPB 411

580

PD1

POPA

520

520 MOS

POPB <u>436</u>

		PHX			FLG						
PD1 PD2(FP PD1)			PD3(FP PD2) PD1			_	PD2(FI	? PD1)	PD3(FP PD2)		
POPA		POPA		POPA		POPA		POPA		POPA	
372	MOS	372	MOS	332	MOS	<u>148</u>	MOS	168	MOS	228	MOS
POPB	590	POPB	374	POPB	332	POPB	509	POPB	<u>301</u>	POPB	289
335		495	ł	332	ŧ	<u>128</u>	ł	<u>193</u>		237	ļ
		1		1							

CURRENT 0000 GMT RAOB CURRENT 1200 GMT MOS

				TYPE	2 - N=1	T							
			PHX			FLG							
1	PD1 PD2(FP PD1)		PD3(FP PD2)		PD1		PD2(FP PD1)		PD3(FP PD2)				
	POPA		POPA		POPA		POPA		POPA		POPA		
	<u>251</u>	MOS	104	MOS	<u>91</u>	MOS	236	MOS	<u>276</u>	MOS -	275	MOS	
	POPB	222	POPB	<u>142</u>	POPB	<u>158</u>	POPB	<u>518</u>	POPB	<u>318</u>	POPB	<u>324</u>	
	288	l.	<u>104</u>	1	<u>91</u>	• · ·	<u>275</u>	(<u>276</u>	,	<u>275</u>		
1			f										

CURRENT	0000	GMT	RAOB
PREVIOUS	1200	GMT	MOS

TYPE 4 - N=26

520 MOS

POPB 446

	PHX				FLG						
PDL	PD2(FP PD1)		PD3(FP PD2)		PD1		PD2(FF PD1)		PD3(FI	? PD2)	
FOPA	POPA		POPA		POPA		POPA		POPA	- 1	
<u>284</u> MOS	<u>106</u>	MOS	266	MOS	<u>336</u>	MOS	354	MOS	<u>394</u>	MOS	
POPB <u>131</u>	POPB	159	POPB	282	POPB	<u>414</u>	POPB	262	POPB	<u>394</u>	
282	<u>58</u>	11	<u>242</u>		348	• 	<u>354</u>	•	<u>388</u>	I	

-16-

COMPARISON OF TOTAL BRIER SCORES FOR BOTH ORIGINAL POPS (POPA) AND BREAKDOWN POPS (POPB) TO PREVIOUS MOS POPS

CURRENT 1200 GMT RAOB PREVIOUS 0000 GMT MOS TYPE 1 - N=20

						_						
		РНХ			FLG							
PDL	PD1 PD2(FP PD1)		PD1)	PD3(FP PD2)		PD1		PD2(FP PD1)		PD3(FP PD2		
POPA POPA		POPA	,	POPA		POPA		POPA		POPA		
500	MOS	<u>520</u>	MOS	500	MOS	<u>260</u>	MOS	340	MOS	500	MOS	
POPB	481	POPB	<u>581</u>	POPB	<u>180</u>	POPB	<u>329</u>	POPB	207	POPB	130	
<u>320</u>	'	<u>372</u>		428	•	<u>416</u>	I	<u>412</u>	1	<u>372</u>	I	

CURRENT 1200 GMT RAOB PREVIOUS 0000 GMT MOS

			TYPE	<u>2 - N=1</u>	./								
		PHX			FLG								
PD1 PD2(FP PD1)			PD3 (FI	P PD2)	PD1		PD2(FP PD1)		PD3(FP PD				
POPA		POPA		POPA		POPA		POPA		POPA			
337	MOS	368	MOS	428	MOS	425	MOS	412	MOS	<u>392</u>	MOS		
POPB	180	POPB	259	POPB	180	POPB	<u>329</u>	POPB	207	POPB	130		
320	•	<u>372</u>	ł	<u>428</u>	•	<u>416</u>	f	<u>412</u>	I	372	I		
1				•						1			

COMPARISON OF TOTAL BRIER SCORES FOR BOTH ORIGINAL POPS (POPA) AND BREAKDOWN POPS (POPB) TO PREVIOUS MOS POPS

CURRENT 1200 GMT RAOB PREVIOUS 0000 GMT MOS TYPE 3 - N=11

				-	-												
		PHX						FLG									
PD1 PD2(FP·PD1)			PD3(FI	PD2)	PD1		PD2(FP PD1)		PD3(FI	PD2)							
POPA		POPA		POPA		POPA		POPA		POPA							
<u>219</u>	MOS	<u>164</u>	MOS	<u>164</u>	MOS	<u>284</u>	MOS	316	MOS	179	MOS						
POPB	<u>106</u>	POPB	<u>146</u>	POPB	<u>231</u>	POPB	163	POPB	223	POPB	181						
<u>219</u>		<u>169</u>		<u>207</u>	1	<u>291</u>	1	329		<u>195</u>							

CURRENT 1200 GMT RAOB PREVIOUS 0000 GMT MOS

TYPE 4 ~ N=17

[PHX				FLG							
PD1	PD1 PD2(FP PD1)		PD3(FP PD2)		PD1	PD1		PD2(FP PD1)		PD2)			
POPA	POPA		POPA		POPA		POPA		POPA		POPA		
	MOS	<u>97</u>	MOS	97	MOS	<u>228</u>	MOS	408	MOS	408	MOS		
POPB	43	POPB	<u>117</u>	POPB	145	РОРВ	310	POPB	365	POPB	292		
7	7 97		<u>97</u>		228		408		408				

FIGURE 7a-d. COMPARISONS OF TEST DATA BRIER SCORES DERIVED FROM ORIGINAL (POPA) AND BREAKNOWN (POPB) PROBABILITIES OF MEASURABLE PRECIPITATION TO THOSE FROM FINAL MOS PROBABILITIES OF THE COMPUTER RUN 12 HOURS PREVIOUS TO RAOB TIME. NOAA Technical Manoranda NWSWR: (Confined)

- reennies: Memoranes MEMORANES (CONTINUCS) Smoke Management in the Willamette Valley. Earl M. Botes, May 1970. (COM-74-11277//AS) An Operational Evaluation of 200-mb Type Regression Equations. Alexander E. MacDenald, June 1974. (COM-74-11407/AS) Conditional Probability of Visibility Less than One-Halt Mile in Radiction Reg at Presso, California. John D. Themas, August 1974. (COM-74-11407/AS) Conditional Probability of Visibility Less than One-Halt Mile in Radiction Reg at Presso, California. John D. Themas, August 1974. (COM-74-11959/AS) Map Type Presipitation Probabilities for the Mastern Region. Glank E. Resch and Alexander E. MacDenald, February 1975. (COM-75-10428/AS) Eastern Pacific Cut-off Less of April 21-23, 1974. William J. Alder and Coarge R. Willer, January 1976. (PB-250-711/AS) A Study of Plash Flood Susceptibility—A Basin in Section Arizone. Carcid Williams, August 1975. (COM-75-105/AS) A Study of Flosh Flood Susceptibility—A Basin in Section Arizone. Carcid Williams, August 1975. (COM-75-10716/AS) A Study of Flosh Flood Susceptibility—A Basin in Section Arizone. Carcid Williams, August 1975. (COM-75-10716/AS) A Study of Flosh Flood Susceptibility—A Basin in Section Arizone. Carcid Williams, August 1975. (PB-246-902/AS) A Set of Rules for Forgeasting Temperatures in Napa and Sonema Counties. Nesley L. Twitt, Octaber 1975. (PB-246-902/AS) Application of the National Weather Service Flosh—Flood Program in the Western Region. Coreid Williams, January 1976. (PB-246-902/AS) Application of the National Weather Service Flosh—Flood Program in the Western Region. Coreid Williams, January 1976. (Marine Arizone Counties, Nesley L. Twitt, Octaber 1975. (PB-246-902/AS) Application of the National Weather Service Flosh—Flood Program in the Western Region. Coreid Williams, January 1976. (PB-235-055/AS)

- (PB=232-053/AS) Objective Arie for Forecasting Minimum Temperstures at Rano, Nevela, During the Summer Months. Ghristopher D. Hill, January 1976. (PB=222-866/AS) Percessting the Mone Wind. Charles P. Russha, Jr., Pobruary 1976. (PB=254-650) Use of MOS Percesst Perameters in Temperature Percessing. John G. Plankinton, Jr., March 1976. (PB=294-649) Nap Types as Aids in Using MOS Pors in Western United States. Ira C. Branner, August 1976. (PB=252-864) other Kinds of Wind Shear. Christopher D. Mill. August 1976. (PB=260-457/AS) Percessting North Winds In the Upper Seramate Valley and Adjoining Percess. Christopher E. Pentana, Sept. 1976. (PB=275-577/AS)
- 106

- 124

- Grinor Kinds of Kind Shaer. Bendstatur 5. Mill: August 1978. (RE-262-457/48)
 Gradestin Binschn Windes in the Upper Sacromatrie Valley and Adjeining Parasts. Burletopher 5. Partuas, Sapt. 1978.
 Grad Linfter as backsning Infiltence on Eactors Realist Tropical Gystence. William J. Bentasy, Nevamber 1975.
 Grad Linfter as backsning infiltence on Eactors Realist Tropical Gystence. William J. Bentasy, Nevamber 1976.
 Grad Linfter as backsning infiltence on Eactors Realist Tropical Gystence. William J. Bentasy, Nevamber 1976.
 Her Sacros Minimum Tamesrature Remains the Backsning Infiltence on Eactors (Eactors).
 Her Sacros Minimum Tamesrature Remains the Backsning Infiltence on Eactors (Eactors).
 Her Sacros Minimum Tamesrature Remains the Backsning Infiltence on Eactors (Eactors).
 Her Sacros Minimum Tamesrature Remains the Backsning Infiltence on Eactors (Eactors).
 Her Sacros Minimum Canada Sacros (Eactors).
 Her Sacros Minimum Canada Sacros (Eactors).
 Her Sacros (Eactors).
 Her Sacros (Eactors).
 A Backsning Infiltence (Eactors).
 A Backsning Infiltence (Eactors).
 Her Sacros (Eactors).
 <l

- April 1979. Gemperison of LFM and MFM Precipitation Guidance for Nevada During Barcon. Ohristophar Hill, April 1979. The Usefulness of Date from Nountaintop Fire Leakout Stations in Detarmining Atmospharic Stability. Jonatthan W. Geray, April 1979.

NOAA SCHENTIFIC AND TECHNICAL PUBLICATIONS

NOAA, the National Oceanic and Atmospheric Administration, was established as part of the Department of Commerce on October 3, 1970. The mission responsibilities of NOAA are to monitor and predict the state of the solid Earth, the oceans and their living resources, the atmosphere, and the space environment of the Earth, and to assess the socioeconomic impact of ratural and technological changes in the environment.

The six Major Line Components of NOAA regularly produce various types of scientific and acchnical information in the following kinds of publications:

PROFESSIONAL PAPERS -- Important definitive research results, major techniques, and special investigations.

TECHNICAL REPORTS—Journal quality with extensive details, mathematical developments, or data listings.

TECHNICAL MEMORANIDUMS — Reports of preliminary, partial, or negative research or technology results, Interim instructions, and the like. CONTRACT AND GRANT REPORTS—Reports prepared by contractors or grantees under NOAA sponsorship. TECHNICAL SERVICE PUBLICATIONS—These are publications containing data, observations, instructions, etc. A partial listing: Data serials; Prediction and outlook periodicals; Technical manuals, training papers, planning reports, and information serials; and Miscellancous technical publications.

ATLAS—Analysed data generally presented in the form of maps showing distribution of rainfall, chemical and physical conditions of oceans and atmosphere, distribution of fishes and marine mammals, ionospheric conditions, etc.

Information on availability of NOAA publications can be obtained from:

ENTREMISED MOITAMARGINI EMELSE L'ATTREMINORIVIEL EDIVIRE ATAL DATA BENVIRONIVIEL EDIVELS ATAL DIVERSION DIVISITEATION MOITATIENTE ADMINESTEATION DIVISITEATION EDITATION OF COMMENDE EDITATION OF COMMENDE

> 3300 Whitehaven Street, N.W. Washington, D.C. 20295