

Western Region Technical Attachment 89-07 February 28, 1989

USING PROFILER DATA TO DIAGNOSE THE ATMOSPHERE--A CASE STUDY

Eric R. Thaler, WSFO Denver, Colorado

[Editor's Note: The attached paper was recently published as Central Region Technical Attachment 89-4. This TA illustrates the usefulness of profiler data in operational forecasting and how it provides an important supplement to our radiosonde observations.]

Having upper air observations on an hourly basis should be far superior to the usual 00Z and 12Z radiosonde observations currently available. At the National Weather Service Forecast Office in Denver we have had the privilege of access to data from four wind profilers located in northeast Colorado (see Figure 1). All four provide winds aloft on an hourly basis with Stapleton reporting temperature and dew point as well as winds (winds only up to about 500 mb). This technical note will show how the profilers were used to observe the passage of a deformation zone across northeast Colorado.

Figure 2 shows the 400 mb streamline analysis on October 6, 1988 at 12Z. Note the well defined closed cyclone over southern Nevada with an associated deformation zone extending to the northeast over the central Rockies. The axis of dilatation in this deformation field is very near the Wyoming-Colorado border at this time with westerly winds south of the axis and northerly winds to the north.

Satellite imagery (not shown) delineated this axis quite well with IR imagery showing a thin band of cirrus along it. The VAS 6.7 micron water vapor loop showed the axis even better with an area of mid-level moisture indicating upward vertical motion along and south of the axis and an area of little mid-level moisture (i.e., downward vertical motion) to its north. This loop also showed the axis moving slowly southward and the ongoing stretching along the axis very nicely.

RAOB's from 12Z, October 6, 1988, for Lander, Wyoming (LND) and Derwer, Colorado (DEN) (Figure 3) show a very definite difference in the air mass on either side of the axis. The precipitable water differs by nearly .40 inch and stability indices are also markedly different.

As the day progressed, the deformation zone continued moving southward, with a band of altocumulus and some cumulus developing along it. This can be seen in the observations at Denver between 17Z and 20Z (Figure 4).

Figure 5 contains vertical time sections of the four profilers. Time increases to the left along the bottom, pressure in millibars is shown on the right, and height above sea level in kilometers is shown on the left. The

dilatation axis passed by the profiler at Fleming between 13Z and 15Z as evidenced by a decrease in wind speed and a veering of the wind from northwest to north in the layer around 300 mb.

Platteville's profiler noted the passage of the axis between 14Z and 16Z shown in the winds near 400 mb. Winds at all levels made a marked shift from westerly to northerly after the axis passed. Stapleton showed the passage between 15Z and 17Z while the axis never reached Flagler (note constant wind direction).

By 19Z, skies north of the axis had virtually cleared of all clouds except for some stratus in extreme northeast Colorado and a few showers over the foothills in the northern part of the Front Range. South of the axis, several cloud decks were observed along with some stronger convection.

Figure 6 is another profiler graphic giving a simultaneous display of data from all four profilers. (To get a perspective of what this graphic is, consider yourself sitting in the Texas Panhandle and looking to the northwest.) This graphic clearly shows the location of the dilatation axis with northerly winds at all the profiler sites with the exception of Flagler, which is some 100 miles to the southeast of Derver. This graphic has the added feature that it can be animated with up to eight frames of data in the loop. The animation of this graphic gives the user a very nice picture of the movement of this axis.

Animation of the NCAR Doppler radar (CP2) (not shown) confirmed the location of the axis in both the reflectivity and velocity data. Precipitation echoes to the north of the axis were moving nearly due south and dissipating while at the same time those to the south of the axis were moving almost straight east and remaining strong, with some even developing into thurderstorms. Doppler velocities showed moderate shifting along the axis.

Figures 7 and 8 contain several more profiler derived graphics which also aid in the diagnosis of the atmosphere. These types of graphics are often discussed in the literature where they are based on twice-a-day radiosonde observations. Until the advent of the profilers, this data was not available to the operational forecaster on a real-time basis.

Figure 7 is based on the Stapleton profiler only, with time increasing to the left. The right hand side of the figure shows vertical time sections of temperature change, the top one from 17Z to 21Z and the bottom one from 16Z to 20Z. Notice the cooling aloft prior to 1730Z which is right ahead of and at the time of the axis passage. After this, warming aloft occurred most likely due to subsidence behind the axis.

The left hand side of Figure 7 shows vertical time sections of potential temperature for the same time periods as the temperature changes described above. Although subtle, note the tightening of the vertical potential temperature gradient during these time periods, especially in the layer from 350 mb to 500 mb. This, of course, implies an increase in stability.

Even without the use of satellite and radar data, information gathered by the profilers allowed for a complete diagnosis of the vertical motion field. The vertical time sections of the winds aloft showed the exact location and movement of the dilatation axis. The temperature change and potential temperature graphics showed how the air mass was changing both ahead of and behind the axis. Ahead of the axis upward vertical motion existed as shown by cooling aloft, the production of several cloud decks, and moderate convection. Behind the axis, downward vertical motion was observed along with warming aloft, an increase in stability, and cloud and shower dissipation. Satellite and Doppler radar data served only to confirm what was determined from the profiler data and surface observations.

The passage of this dilatation axis set the stage for overnight events. The subsidence and attendant drying behind the axis produced a stable air mass with clear skies which provided for excellent radiational cooling. Furthermore, a weak pressure surge followed the axis passage and light upslope winds developed through a fairly deep layer based at the surface. Figure 8 shows the Denver RAOB taken at 00Z on October 7, 1988. Note the significant changes in precipitable water and stability from the previous sounding. As one might expect with strong radiational and upslope surface winds, fog and low stratus formed in Denver and, in fact, was quite widespread over northeast Colorado by sunrise.

Profiler data was used in this case study to determine the air mass structure over northeast Colorado as a rather strong axis of dilatation passed over the area. This is only one of numerous examples of how the profiler can be utilized to help diagnose the atmosphere. Axes of this type can be crucial in the cool season as they can influence both rate of fall and total snowfall in winter events. With the profiler data available, the forecaster can obtain a better picture of what is happening in the forecast area which obviously will lead to a better forecast product, in turn improving service to the public.

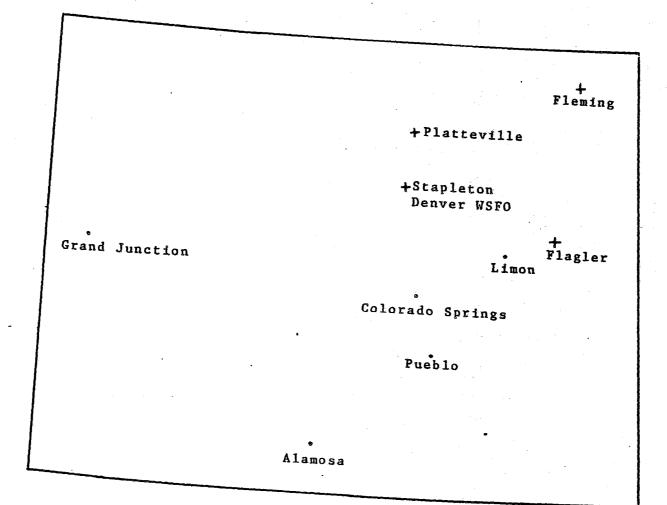
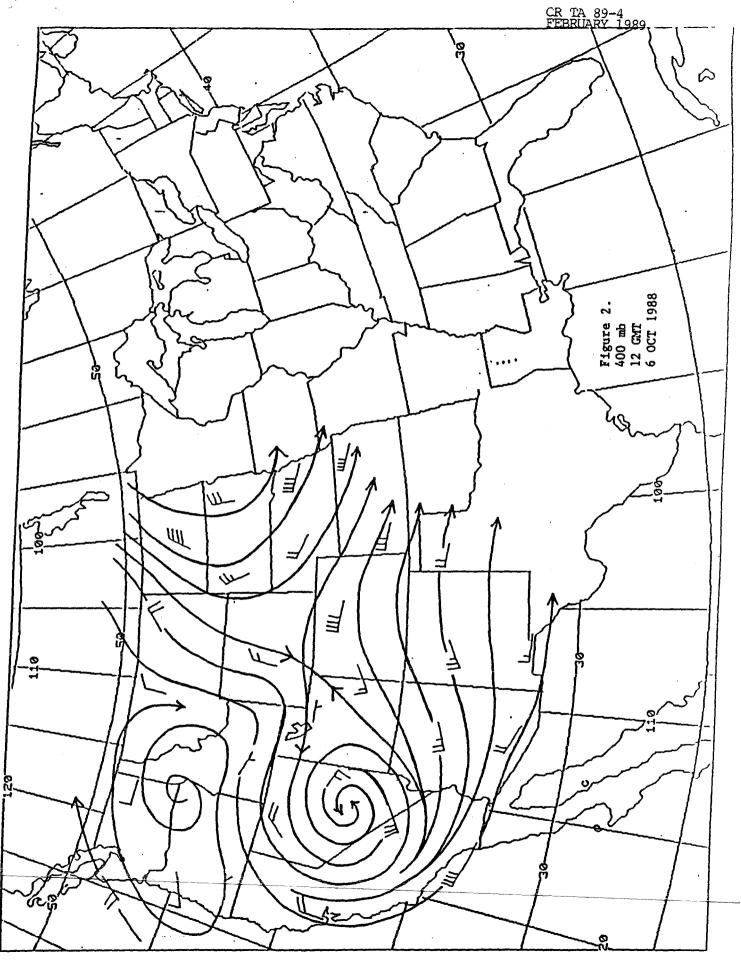



Figure 1. State of Colorado showing profiler locations (+) and NWS stations.

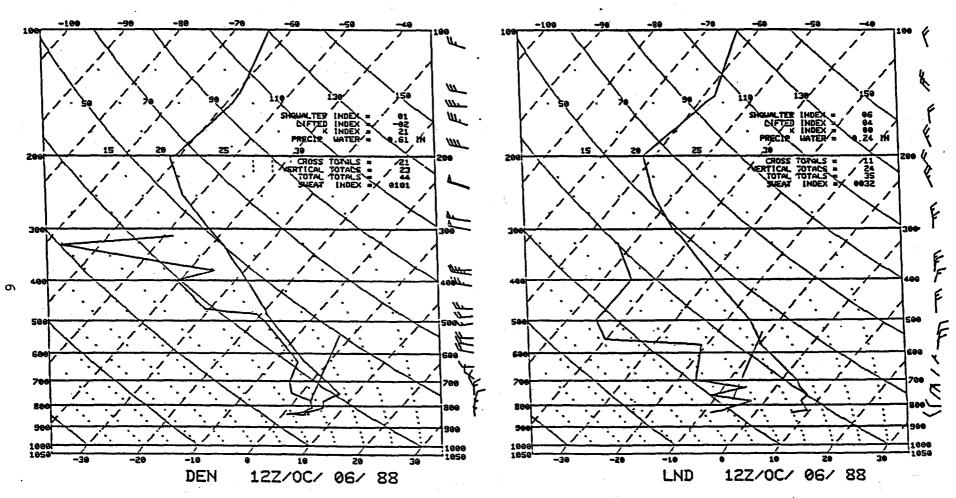
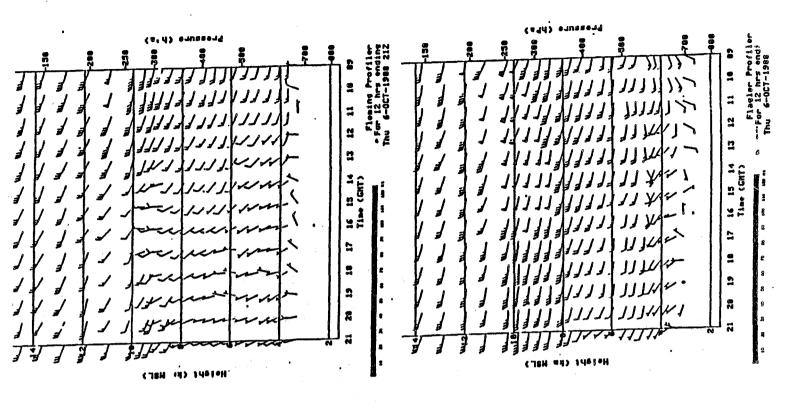



Figure 3. Radiosonde observations for Denver, CO (DEN) and Lander, WY (LND)

```
DEH RS 1153 H2 OVC 1/2F 264/39/39/3304/040/R35RVR16V35 SFC VSBY 1/
      302 16// 36 RODAT 22079
 DEN SP 1140 III OVC 1/2F 2504/040/R35RVR08V15 SFC VSBY 1
 DEN 50 1053 W0 X 3/8F 264/38/38/0104/039/R35RVR14V2B TWR VSBY 1/2
 DEII RS COR 0951 111 OVC 3/8F 264/38/38/3605/039/R35RVR 06-V30 TUR
     VSBY 1/2
 DEII RS 0951 III OVC 3/8F 264/38/38/039/R35RVR 06-V30 TLR VSBY 1/2
 DEII RS 0951 III OVC 3/8F 264/38/38/039/R35RVR 06-V30 TWR VSBY 1/2
 DEH SP COR 8923 HI OVC 1/2F 3486/839/R35RVR 86-V55
 DEH SP 0323 HI OVC 1/2F 3406/039/R35RYR 06-V55
 DEII RS 0052 W0 X 3/0F 263/39/39/3604/039/R35RVR 06- TWR V58Y 1/2/ 400
 DEH SP 0834 HI DVC 3/8F 3503/020/R35RVR 06-V14 TWR VSBY 1/2
 DEII SP 0010 112 OVC 1F 3604/040/R35RVR 24V60+
 DEII SP 0809 113 OVC 2F 3604/040/TWR VSBY 111SG TIIN SPTS 10VC
 DEII SN 0750 3 SCT 7 268/37/37/3506/039/ 98541
 DEII SA 0651 CLR 10 260/39/37/3404/039/STFRA 5 IIID W
 DEH SP 0635 CLR 10 3006/039/STFRA 5 HILD W
 DEH 50 0552 CLR 10 262/41/39/0306/039/ 112 65
 DEII SA 0452 CLR 15 263/41/38/3607/039
 DEH SA 0353 CLR 15 261/44/39/3603/038
DEII SN 0253 CLR 15 252/47/40/0900/035/ 317
DEII SA 0152 250 -SCT 12 248/53/41/1012G10/033
DEII SN 0050 CLR 12 233/57/41/1106/030
DEH SA 2351 250 -0KH 12 225/62/41/0205/029/TCU SW-W 011119/ 307 1270
    65 RNDAT 68115
DEH SA 2250 250 -BKH 12 214/64/41/3608/027
DEII SA 2152 130 SCT 250 -BKII 15 211/63/39/0106/026/ CB DSHT HU
DEII SA 2053 130 SCT E250 BKH 10 211/64/41/3507/027/ CB DSHT HW 803 1372
DEII SA 1952 80 SCT 120 SCT E220 BKII 7 213/61/42/0108/027
DEII SA 1851 78 SCT E120 BKII 220 DKII 7 220/60/43/0109/029
DEII SA 1750 70 SCT 85 SCT E120 BKH 7 215/61/45/0111/028/ TCU SW/
40000 1270 42
DEN SA 1650 70 SCT 120 SCT 7 219/60/45/0106/020
DEII SA 1550 120 SCT 6F 219/56/47/2107/028/CU SC W-IIE
DEII SN 1450 120 SCT 6F 226/50/46/1807/028/CU SC W-II/ 30300 1870
```

Figure 4. Surface observations from WSFO Denver, CO.

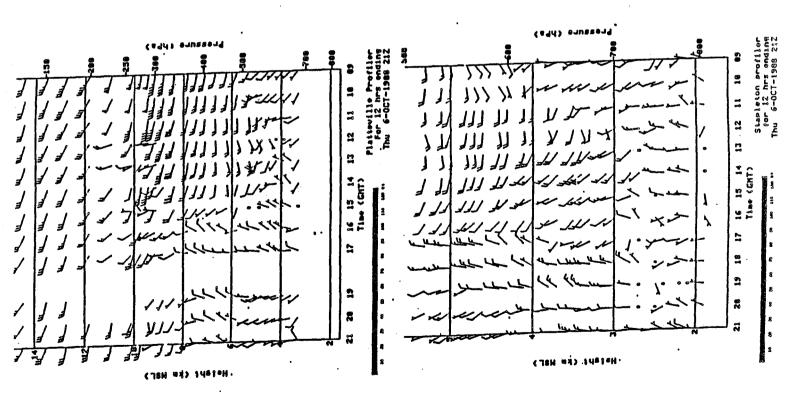


Figure 5. Vertical time-sections of winds aloft at Platteville, Fleming, Flagler, Stapleton profilers.

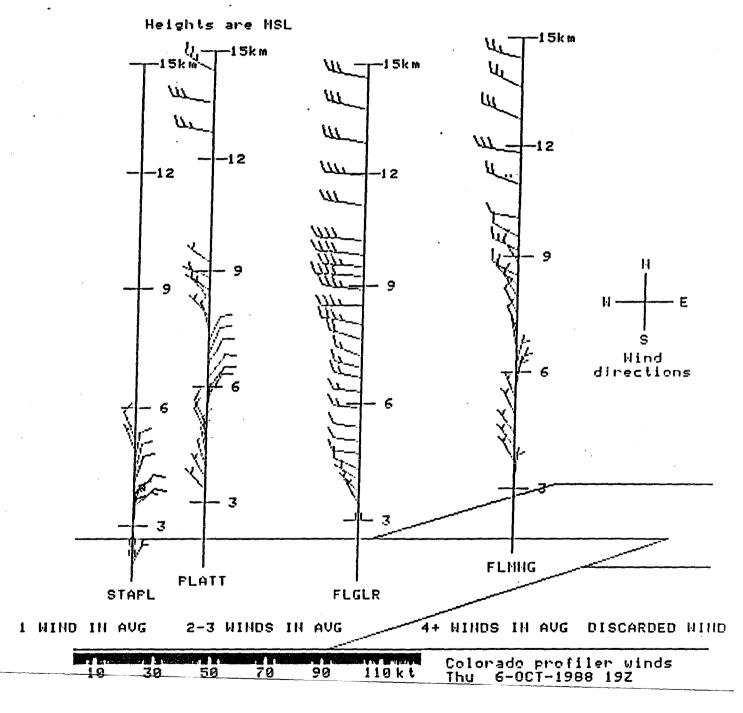
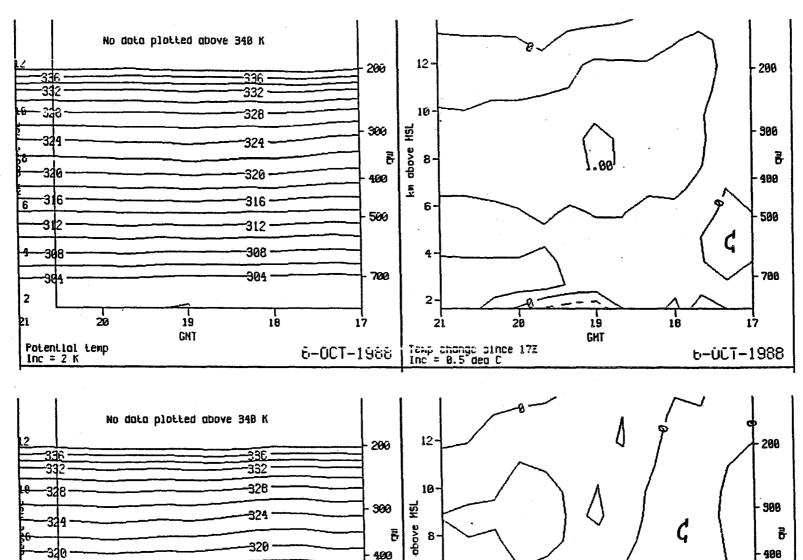


Figure 6. Simultaneous view of profiler data.

498


500

780

16

6-0CT-1988

17

400

569

700

16

6-0CT-1988

-316

-312 308 304

17

ž

6

2

20

Temp change since 162 Inc = 0.5 deg C

19

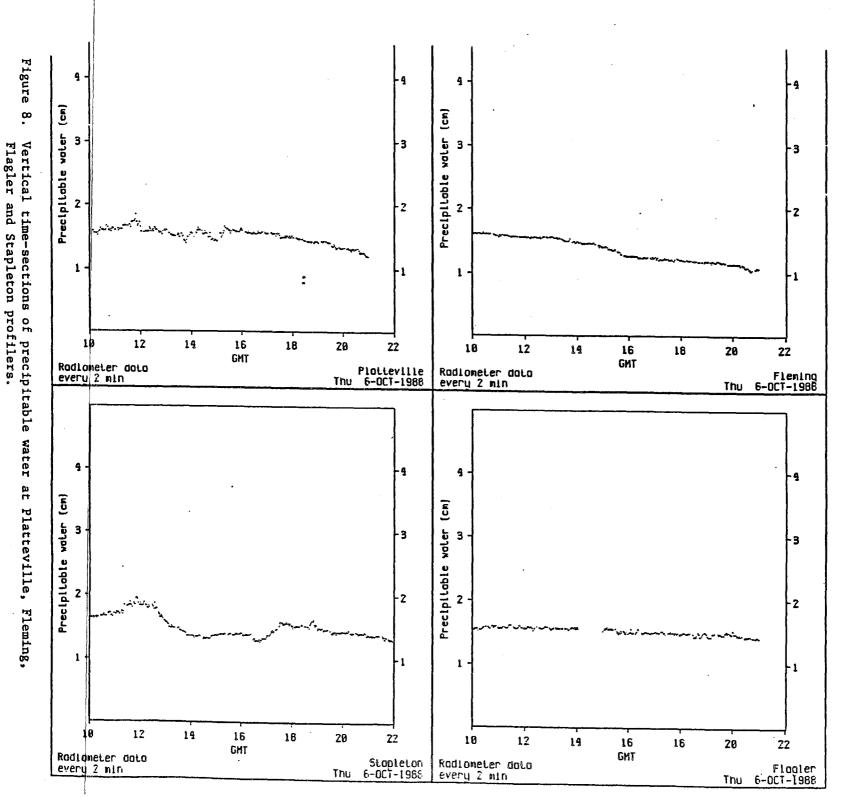
18

GHT

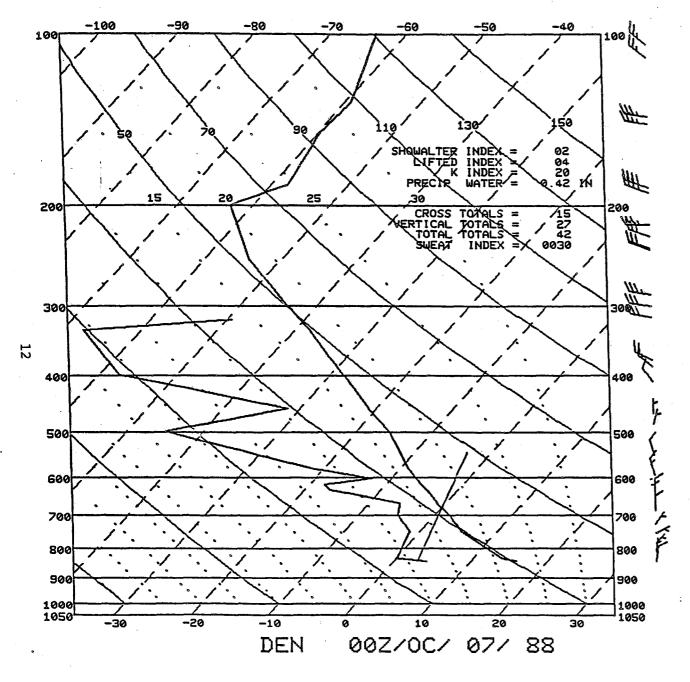
Figure 7. Vertical time-sections of temperature change (right). potential temperature (left) and

2

20


19

Potential temp Inc = 2 K


18

GNT

10

11

Firme 9. Radiosonde observation from Denver, CO (DEN)