
Western Region Technical Attachment 
NO. 88-30 

November 1, 1988 

BENCHMARKING AFOS, OR 
IS THE IBM-PC JUST A REPACKAGED ECLIPSE S/230? 

David Linder - WSFO San Francisco 

One of the more interesting aspects of the AFOS Systems Manager (ASM) position at 
WSFOs is that the ASM frequently inherits the additional title and responsibilities of "resi­
dent computer expert:' This "expert" is the National Weather Service's version of Shell's 
Answer Man. He (or she) is the one who people turn to when they have a computer ques­
tion even when the topic is only remotely related to computer science. Thus, the ques­
tions cover a broad spectrum of topics -- from "what is binary arithmetic?" to "what is the 
best personal computer to buy?", or from "what are these funny switches on the front of 
the AFOS computer?" to "how many computer hackers does it take to change a light bulb?" 

Often, the questions arise because of a lack of understanding about some basic computer 
science concept (it may be "basic" to a computer nerd but it is probably "advanced" to 
more normal folks). For example, I have heard many queries related to the computation­
al capabilities, or lack thereof, of the Data General minicomputers (Eclipse S/230s) that 
form the backbone of the AFOS system. From the user's perspective, the AFOS system's 
response time is far from instantaneous and sometimes can be downright abominable. 
On the other hand, from an ASM's perspective, it is surprising how well the Eclipses do. 
Compared to the computers of 1988, the Eclipse architecture is ancient. Yet, the AFOS 
computers still do a reasonably good job driving as many as eight synchronous lines, a 
couple of dozen asynchronous lines, while simultaneously executing foreground and back­
ground programs. 

The basic computer science concept at issue here is: "how do you measure the perfor­
mance of a computer system?" Subjective evaluations, like those above, can lead to wide­
ly disparate results. In fact, just defining what you are trying to measure (computer 
performance) is an entire science by itself-- in many ways, the intricacies of computer 
benchmarking are analogous to the complexities encountered in weather forecast verifica­
tion. 

Still, even with the difficulties involved in designing adequate performance metrics, I wanted 
to produce some simple comparisons of Eclipse execution speed versus other common­
ly-used computer systems. The hope was that these measurements would give AFOS 
users a clearer oep1ct1on of the1r computer's perrormance compared m other machines 
used today. 

To maintain simplicity, I designed benchmarks to measure just the most fundamental math­
ematical operations performed by the CPU component of each computer. In other words, 
1 tried to exclude effects of overall I/O throughput, compiler efficiencies, and multitasking. 



The benchmark programs were written in either FORTRAN (on the Eclipse) or C (on all 
other computers) with no compiler optimization. All of the programs followed this pseudo­
coded algorithm (where is the operation to be bench marked):· 

1) read clock; 
2) loop thru 1 million iterations 
a= b <op> c;· 
3) read clock and compute time used in step 2); 
4) compute time used for 1 < op > by dividing result of step 3) by 1 million then subtract­
ing time required for one cycle through a null loop;· 

I examined the machine code produced by each compiler to ensure that the benchmark 
was indeed measuring the mathematical operation and not some artifact of the compiler. 
The Eclipse benchmarks were executed several times during nquiee AFOS periods to get 
a best-case measurement of Eclipse performance. 

I had access to five different computers (listed in order of the age of the design): an Eclipse 
S/230, a plain-vanilla IBM PC (4.7 MHz), a Compaq-286 (12 MHz), a Macintosh II (16.5 
MHz), and a Sun 4/280 (20-30 MHz). Although clock speed in an important discriminator, 
other significant differences in architecture among the systems listed also played a major 
role in the results. For each machine I measured the time required for: a null loop (the 
time it takes to cycle through a loop without any executable statements in it), a function 
call (where the function contained no executable statements), an add operation, multiply 
operation, and divide operation. The mathematical operations were examined for integers, 
single precision floating point numbers, and double precision floating point numbers. In 
general, the newer machines use higher precision 32-bit integers as opposed to 16-bit in­
tegers in the older ones. 

The results are shown in Figures 1 and 2. The y-axis is shown in a logarithmic scale so 
that differences between the machines are understated. In general, AFOS and the IBM­
PC perform similarly in all of the benchmarks and both badly trail the rest of pack. Their 
speed ranges from 20 to 500 times slower than the fast Sun workstation. The clear win­
ner is the state-of-the-art Sun. Its results are even more exceptional when you consider 
that this is a multitasking UNIX machine which was usually running 5-10 other tasks when 
the benchmarks were run. 

This experiment also shows how inefficient some mathematical operations are compared 
to others. Simple integer operations are usually 2-3 times slower than a null loop opera­
tion. Floating point operations are 2 (for the newer machines) to 10 times slower than their 
integer counterparts. Finally, double precision floating point operations are another 1.5 to 
2 times slower than their single-precision counterparts. Therefore, it is no surprise that 
programmers are encouraged to use integer arithmetic. 

Altogether these benchmarks required very little time to create and run on all of the 
machines involved. The results provide a realistic but somewhat naive look at the rapidly 
changing state-of-the-art in computer hardware design. 



m 
i 
c 
r 
0 

s 
e 
c 
0 

n 
d 
s 

Benchmark Times 
Null Loop Function Call Integer Add Integer Mult Integer Divide 

10 

1 

0.1 I 1-:-:-:-:-:-:-:-:-:t 

llilll AFOS 0 IBMPC mill Compaq 286 E21 Macintosh II • Sun 4/280 · 

F1gure 1: Benchmark execution time for each specified function on five different computers. 



Benchmark Times 
Float Add Float Mult Float Divide Double Add Double Mult Double Divide 

m 10000 ~~~ c 
r 
0 

s 
e 
c 
0 

n 
d 
s 

1000 B I I. I I. I I. I I' 
100 

10 

1 

1m AFOS 0 IBMPC Iii Compaq 286 r..a Macintosh II • Sun 4/280 · 

Figure 2: Benchmark execution time for each specified function on five different computers. 


